Elsevier Science Ltd
Printed in Great Britain
0040-4039/94 $7.00+0.00

Tetrahedron Letters, Vol. 35, No. 37, pp. 6861-6864, 1994
Pergamon

0040-4039(94)01455-8

Chiral n‘-Arene-Cr(CO):,, Complexes as Synthetic Building Blocks:
An Enantio- and Diastereoselective Approach to Substituted
Hydrophenalenes Related to Helioporin E and Pseudopterosin G

Hans-Giinther Schmalz®,
Institut fitr Organische Chemie der Technischen Universitiit, Strafic des 17. Juni 135, D-10623 Berlin, Germany
Andrea Schwarz, and Gerd Diirner

Institut fiir Organische Chemie der Universitiit, Marie-Curie-StraBe 11, D-60439 Frankfurt am Main, Germany

Abstract: The enantiosclective total synthesis of compound 14, an analoguc of dihydro-helioporin E and
dibydro-pseudopterosin G, is accomplished by a strategy which centrally relies on the reactivity of arene-Cr(CO),
complexes. The chiral synthetic building block 6 (> 97 % c.c.) is converted in 12 steps regio- and diasterco-
selectively into complex 12, from which 14 is obtained by decomplexation and methylation. Key steps of the
synthesis are two succesive regio- and diastereoselective benzylic deprotonation/alkylation reactions.

Recently, Tanaka et al. reported on the isolation of the helioporins, a group of bicactive diterpenes
from the blue coral Heliopora coerulea.! One of these compounds, the cytotoxic helioporin E (1), is
structurally closely related to pseudopterosin G (2), an antiinflammatory active compound isolated from an
other octocoral, the gorgonian Pseudopterogorgia elisabethae2

In this paper we wish to disclose a synthetic strategy which opens up an efficient and completely
stereoselective total synthesis of substituted hydrophenalenes related to the above-mentioned compounds3.
Our approach is centrally based on the reactivity of arene-Cr(CO), complexes.4 As a unique feature, almost
the complete synthesis is carried out at the complexed ligand. The absolute stereochemical information is
brought into the synthetic route by means of a chiral K-complex of an achiral arene ligand.
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Our retrosynthetic analysis is shown in Scheme 1: Following a technique worked out with the aid of
model compounds,5 pre-target molecules of type 3 derive from substituted tetralin complexes of type 4,
which in turn should be accessible from the structurally much simpler complex 5 via establishing the two
benzylic substituents at the tetralin skeleton by successive deprotonation/alkylation steps.6 The Cr(CO),
group thereby serves as an activating group by emhancing the acidity at the benzylic positions’ and
furthermore acts as a stereodirecting group by blocking one ni-face of the arene ligand. Therefore, the exo-
configuration of the two benzylic substituents of 4 is guaranteed.
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Scheme 1

The actual synthesis (Scheme 2)8 starts with the nonracemic 1-tetralone-Cr(CO); derivative 6° which
is obtained in ca. 60 % overall yield and with high enantiomeric purity!? from 6,7-dimethoxy-1-tetralone via
diastereoselective complexation of the temporarily chirally modified ligand®. This chiral synthetic building
block is then converted to the dihydronaphthalene derivative 7 by a-methylation, reduction, and dehydration.
Rh-catalyzed hydrogenation of 7 (from the face opposite to the metal) completely diastereoselectively gives
the endo-complex 5.10 After protecting the two more acidic aryl positions by silylation using a one-pot
procedurell, benzylic deprotonation of the bis-silylated complex 8 is achieved with n-BuLi at 0 °C.
Treatment of the lithiated intermediate with isobutyl iodide then furnishes the alkylated product 912 as a pure
regio- and diastereoisomer!3. The introduction of the second benzylic sidechain is accomplished by a
lithiation/Michael addition!4 sequence employing methyl-o-trimethylsilyl-acrylate15. After fluoride-induced
desilylation, the ester 1016 is obtained as a single diastereomer.

The concluding steps of the synthesis are performed employing procedures worked out in the model
seriesS. Hydrolysis of the ester function and Friedel-Crafts-type cyclization of the resulting carboxylic acid
furnished the tricyclic complex 1117, The benzylic methy] substituent is diastereoselectively introduced
according to Uemura!® by boranate reduction of the ketone, acetylation, and treatment of the resulting endo-
acetate with trimethylaluminum. This way, the exo-methylated product 12 is obtained, from which the free
ligand 13!? is liberated by oxidative decomplexation. Thus, the transformation of 6 to 13 is achicved in 12
steps with 10% overall yield.

As preliminary experiments have shown, the final methylation of 13 to 1420 is possible under the
conditions given in Scheme 2 — albeit significant amounts of the mono-O-demethylated (phenolic) byproducts
were obtained.

In conclusion, we have demonstrated that the chemistry of arene-Cr(CO); complexes opens up a new
powerful (and potentially flexibel) strategy for the stereoselective total synthesis of substituted hydrophena-
lenes — with the complex 6 as chiral synthetic building block.
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Scheme 2: a) (TMS),N-Li, THF, -78 °C, 15 min, then Mel, HMPT, rt., 2.5 h: b) NaBH,, MeOH/CHClj, rt., 1 h;c) 3 %
p-TsOH on SiO,, CgHg, rt., 4 h; d) 5 bar Hy, cat. Rh/A1y03, ACOEYVACOH (50:1), rt., 30 b; ¢) lithium-2,2,6,6-tctramethyl-
piperidide, TMSCI, THF, - 40 °C -» rt., 1 h; f) a-BuLi, THFf HMPT (25 : 1), -50 °C — 0 °C, 3 h, then I-CH2-CHMe,,
THE, -30 °C = 0 °C, 2 h; g) n-BuLi, THF/HMPT (20:1), -55 °C — 0 °C, 2 h, then CHy=C(TMS)CO9Me, -75 °C — 0 °C,
30 min, then 2 N HCI, 0 °C, 5 min, then TBAF, THF, rt., 15 h; h) NaOH, MeOHW/H30, rt., 20 h; i) PPA, rt,, 3 h, 70 °C,
3h; j) NaBH,4, MeOH/CH,Cl,, rt., 3 h; k) Acy0, py, cat. DMAP, 1t,, 18 h; I) MejAl, CHoCly, -78 °C — 0 °C, 3 h; m) hv,
air, ether, rt.; n) n-BuLi, TMEDA, hexane, 0 °C — 40 °C, 2 h, then Mel, 0°C — 1, 17 h.
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